Markscheme

 $\Delta = b^2 - 4ac = 4k^2 - 4 \times 3 \times (k-1) = 4k^2 - 12k + 12$ MIAI

Note: Award MIA1 if expression seen within quadratic formula.

EITHER

$$144-4\times4\times12<0$$
 MI

 Δ always positive, therefore the equation always has two distinct real roots $\it R1$ (and cannot be always negative as $\it a>0$)

OR

sketch of $y = 4k^2 - 12k + 12$ or $y = k^2 - 3k + 3$ not crossing the x-axis MI

 Δ always positive, therefore the equation always has two distinct real roots RI

OR

write Δ as $4(k-1.5)^2+3$ MI

 Δ always positive, therefore the equation always has two distinct real roots R1 [4 marks]

1b. Find the value of k for which the two roots of the equation are closest together.

[3 marks]

Markscheme

closest together when Δ is least (MI)

minimum value occurs when k = 1.5 (MI)AI

[3 marks]

2. One root of the equation $x^2 + ax + b = 0$ is 2 + 3i where $a, b \in \mathbb{R}$. Find the value of a and the value of b.

[4 marks]

Markscheme

METHOD 1

substituting

$$-5 + 12i + a(2 + 3i) + b = 0$$
 (A1)

equating real or imaginary parts (MI)

$$12 + 3a = 0 \Rightarrow a = -4$$
 AI

$$-5+2a+b=0 \Rightarrow b=13$$
 AI

METHOD 2

other root is 2-3i (A1)

considering either the sum or product of roots or multiplying factors (M1)

4 = -a (sum of roots) so a = -4 A1

13 = b (product of roots) AI

[4 marks]

3. The roots of a quadratic equation $2x^2 + 4x - 1 = 0$ are α and β .

Without solving the equation,

- find the value of α² + β²;
- (b) find a quadratic equation with roots α^2 and β^2 .

Markscheme

(a) using the formulae for the sum and product of roots:

$$\begin{split} &\alpha+\beta=-2 \quad AI \\ &\alpha\beta=-\frac{1}{2} \quad AI \\ &\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta \quad MI \\ &=(-2)^2-2\left(-\frac{1}{2}\right) \\ &=5 \quad AI \end{split}$$

Note: Award M0 for attempt to solve quadratic equation.

[4 marks]

(b)
$$(x - \alpha^2)(x - \beta^2) = x^2 - (\alpha^2 + \beta^2)x + \alpha^2\beta^2$$
 MI
 $x^2 - 5x + (-\frac{1}{2})^2 = 0$ AI
 $x^2 - 5x + \frac{1}{4} = 0$

Note: Final answer must be an equation. Accept alternative correct forms.

[2 marks]

Total [6 marks]

Show that the quadratic equation $x^2 - (5 - k)x - (k + 2) = 0$ has two distinct real roots for all real values of k. [4 marks]

Markscheme

$$\begin{split} &\Delta = (5-k)^2 + 4(k+2) \quad \textbf{MIAI} \\ &= k^2 - 6k + 33 \quad \textbf{(AI)} \\ &= (k-3)^2 + 24 \text{ which is positive for all } k \quad \textbf{RI} \end{split}$$

Note: Accept analytical, graphical or other correct methods. In all cases only award R1 if a reason is given in words or graphically. Award M1A1A0R1 if mistakes are made in the simplification but the argument given is correct.

[4 marks]

One form of Schwarz's Inequality states that for any 4 real numbers p, q, r, and s,

$$pr + qs \le \sqrt{p^2 + q^2} \cdot \sqrt{r^2 + s^2}.$$

Prove Schwarz's Inequality using the following steps.

- **a.** Let $f(x) = (px + r)^2 + (qx + s)^2$. Explain why, for any real number x, $f(x) \ge 0$.
 - **a.** f(x) is a sum of two squares of real numbers.
- **b.** Expand f(x), and express the discriminant of f(x) = 0 in terms of p, q, r, and s. (Leave your answer in factored form.)

b.
$$p^2x^2 + 2prx + r^2 + q^2x^2 + 2qsx + s^2 = (p^2 + q^2)x^2 + (2pr + 2qs)x + (r^2 + s^2);$$

 $4(pr + qs)^2 - 4(p^2 + q^2)(r^2 + s^2)$

- **c.** What does the fact that $f(x) \ge 0$ tell you about where the graph of y = f(x) is situated in relation to the x-axis? What does this tell you about the roots of the equation f(x) = 0? What does it therefore tell you about the discriminant of the equation f(x) = 0?
 - **c.** The graph lies above or on the x-axis. There is at most one real root. The discriminant is less than or equal to 0.
- d. Use your answer to the last question of part (c) to prove Schwarz's Inequality.

d.
$$4(pr+qs)^2 - 4(p^2+q^2)(r^2+s^2) \le 0$$
; $(pr+qs)^2 \le (p^2+q^2)(r^2+s^2)$; taking the square root of both sides, you get Schwarz's inequality.